

Collaboration with Williams International to Demonstrate the Characteristics of a Foam-Metal-Liner Installed Over-the-Rotor of a Turbofan Engine

A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for foam-metal liner installed in close proximity to the fan. Two foam metal liner designs were tested and compared to the hardwall. Traditional Single-Degree-of-Freedom liner designs were also evaluated to provide a comparison. Normalized information on farfield acoustics is presented in this paper. The results show that up to 5 dB PWL overall attenuation was achieved in the forward quadrant. In general, the foam-metal liners performed better when the fan tip speed was below sonic.

Collaboration with Williams International to Demonstrate the Characteristics of a Foam-Metal-Liner Installed Over-the-Rotor of a Turbofan Engine.

Acoustics Technical Working Group Meeting 23-24 September-2008

Dan Sutliff (GRC) Dave Elliott (GRC) Mike Jones (LaRC)
Tom Hartley (Williams International)

Background

FJ44 / Liner

AAPL Facility / Test

Results

Rationale

Improve upon Traditional Liners Used in Turbofan Engines by Replacing with Foam Metal Liner

- •Traditional Liners are "tuned" Single Degree of Freedom.

 (i.e. limited Band Width)
- •Limited BW and/or unique design required.
- •Not suitable for adverse environments (i.e. close to /over the rotor) 'distant' from source.
- •"Over the rotor" application requires rub & containment consideration.
- Ideally would like to use a single component for improved attenuation, fan rub & containment.

Historical Outline

- 2003 2004 RTX / LaRC preliminary studies of foam metal material and acoustic characteristics
- 2005 2006 ANCF tests of Foam Metal Liner in lab
- April-2007: WI representatives attended Acoustics Technical Working Group meeting and expressed interest in applying foam metal liner to FJ44 engine.
- 23-May-2007: RTA/AAPL team visited WI and outlined collaboration with each parties supplying area of expertise; with less than \$0-50K changing hands (\$0)

-WI:

to provide engine & support (ideally:turnkey!!) liner fabrication engine integration

-NASA:

provide manpower and expertise for testing expertise and data systems for acoustic testing material property investigation liner design guidance

- IPP seed fund awarded July 2007
- Delineated though Simplified Space Act agreement signed October 2007
- Added Hawker Beechcraft Corporation and Dr. W. Eversman to collaboration effort on April 2008

Metallic Foams

<u>Flammability test</u>: foam unaffected by 1000°C/30 min in a burner rig. Long life in oxidizing environment to at least 800°C.

Advantages:

- •Excellent acoustic absorption characteristics
- •Ductile alloy with high temperature capability
- •Sheet product identified as unusually high impact resistance
- •Processing technology developed with Porvair (including face sheet brazing and complex shapes)

<u>Immersion tests</u>: foam specimens with a variety of size and shapes in various fluids such as water, skydroll, advanced hydraulic fluid and jet fuel (2 hr immersion + 2 hr ambient drying). Does not readily absorb fluids.

<u>Stress Tests</u>: Mechanical properties surveyed, including compression, bending, tensile (w/face sheets). Can withstand expected mechanical loads.

Rub Tests: Completed

Impedance Tube Tests

Normal Impedance Tube Tests at LaRC

- •Porosities (20 -100 ppi)
- •Densities (4-8%)
- •(2" x 2" x 0.425") samples
- •Two-microphone procedure
- •Two-thickness procedure

Background

FJ44 / Liner

AAPL Facility / Test

Results

FJ-44 -3A Overview

Fan Case & Insert Design

FML Close-up

Background

FJ44 / Liner

AAPL Facility / Test

Results

Placement in AAPL

Schedule as Tested

CONFIGURATIONS TESTED:

HW0	Hardwall configuration - original fan shroud (phased array)
HW1	Hardwall configuration - New inlet & baseline fan shroud

new fan <	HW2 A1-80 A1t-80 A2-40	Hardwall configuration Fan case only treated - 80 ppi foam Fan case only treated - 80 ppi foam near the rotor only Fan case only treated - 40 ppi foam
-----------	---------------------------------	--

SDOF-71 Inlet only treated - C-71 - Hybrid thick/thin treatment zones

SDOF-72 Inlet only treated - C-72 - Thin core treatment (new/orig fan shroud)

DATA TAKEN:

Nearfield Acoustic	15-mic array @ 10'/10'

Farfield Acoustic 28-mic array @ ~60' (not planar)

In-Duct Dynamic 9-high response transducer linear array in inlet

Rotating Rake Modal 14-mic radial distribution in inlet

Flow Data Inlet: Pt rakes; Ps wall taps

Bypass: Pt/Tt rake

Background

FJ44 / Liner

AAPL Facility / Test

Results

Near-Field Data Reduction

- •Data acquired synchronously sampled to fan shaft @ 144/rev
- •Frequency/time domain averaged
- •Spectra for each microphone integrated over 'harmonic bands'

i.e. 1/2 to 11/2 harmonics or 8 to 24 shaft orders (etc) multiplied by area, etc, to obtain PWL

Overall/Broadband/Tones

Nearfield Directivity Plots

1st Harmonic Band / BPF

Nearfield Results (10' inlet arc)

Nearfield Results (10' inlet arc)

Acoustic Summary (1)

9" SDOF liner in inlet: SDOF1 - thick liner (except TT1 cut-out) •fan BPF targeted at 100% N1c SDOF1 - thin liner fan BPF targeted at 75% N1c

Performance (1)

50%

55%

60%

65%

Limited instrumentation:

4 Pt (5 ports) rakes in inlet w/ Ps at base 3 Pt / 3Tt rakes in bypass (behind stators)

Pt/Tt-rakes	Inlet	Bypass
Row	10.322	9.450
R5	9.769	8.575
R4	8.649	8.200
R3	7.325	7.872
R2	5.701	7.450
R1	3.368	7.075
Riw	0.875	7.000

Simple flow computations:

75%

m-dot corr

70%

85%

90%

95%

100%

21

Performance (2)

WI used acquired test parameters as input to engine simulation deck to estimate performance impact of the FML on select engine performance parameters.

(#'s relative to HW2 - effect of FML)

ΔFn	100% N1c	88% N1c	70% N1c
HW1	+3.0%	+3.5%	+5.6%
HW2			
A2	+0.6%	+0.5%	+0.7%
A1	-1.5%	-2.2%	-2.5%

Δ S.M.	100% N1c	88% N1c	70% N1c
HW1	+2.5%	+3.9%	+4.3%
HW2	-		
A2	+0.4%	+0.5%	+0.5%
A1	-0.9%	-1.3%	-1.7%

ΔSFC	100% Fn	88% Fn	70% Fn(?)
HW1	-0.4%	-1.5%	-4.6%
HW2			
A2	+0.0%	-0.1%	-0.1%
A1	+0.2%	+0.6%	+1.2%

Background

FJ44 / Liner

AAPL Facility / Test

Results

Conclusions

Foam Metal Liner was used successfully in an high-speed turbofan engine:

- •Significant attenuation achieved from 2 acoustic designs
- •Performance penalty at optimum acoustic design
- •No performance penalty at off- optimum acoustic design

FML attenuates tones & broadband / not shocks(?).

Aero/Acoustic design was not integrated.